4乗根の方程式 - 質問解決D.B.(データベース)

4乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
投稿日:2021.11.19

<関連動画>

ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left[\dfrac{x^2+1}{10}\right]+\left[\dfrac{10}{x^2+1}\right]=1$
この動画を見る 

数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。

$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$

この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。

(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。

(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。

(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。

(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【数学Ⅰ・新課程】仮説検定の考え方【確率的に正しさを証明する】

アイキャッチ画像
単元: #数Ⅰ#確率#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)ある企業の新商品について20人中15人が「よい」と回答した.$
$この商品は「よい」商品であるか,仮説検定の考え方を用いて考察せよ.$
$(2)A,B,C,D,E,Fの6人の候補者がいる.$
$100人中25人がAを支持していると答えた.$
$Aの支持者は多いと言えるか,仮説検定の考え方を用いて考察せよ.$
この動画を見る 

上智/京大 3次方程式/整式の除法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#上智大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。

京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
この動画を見る 
PAGE TOP