【数C】【平面上のベクトル】ベクトルと図形2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルと図形2 ※問題文は概要欄

問題文全文(内容文):
問題1
$\triangle \rm OAB$において、辺$\rm OB$の中点を$\rm M$辺$\rm AB$を$1:2$に内分する点を$\rm C$、辺$\rm OA$を$2:3$に内分する点を$\rm D$、線分$\rm CM$と線分$\rm BD$の交点を$\rm P$とする。また、$\overrightarrow {\rm OA}=\vec{a},\overrightarrow{\rm OB}=\vec{b}$とする。
(1)$\overrightarrow{\rm OP}$を$\vec{a},\vec{b}$を用いて表せ。
(2)直線$\rm OP$と辺$\rm AB$の交点を$\rm Q$とするとき、$\rm AQ:QB$を求めよ。

問題2
$\rm OA=3, OC=2$である長方形$\rm OABC$がある。辺$\rm OA$を$1:2$に内分する点を$\rm D$、辺$\rm AB$を$3:1$に内分する点を$\rm E$とするとき、$\rm CD\perp OE$であることを証明せよ。

問題3
鋭角三角形$\rm ABC$の外心を$\rm O$、辺$\rm BC$の中点を$\rm M$とする。頂点$\rm A$から辺$\rm BC$に垂線$\rm AN$を下ろし、線分$\rm AN$上に点$\rm H$を$\rm AH=2OM$となるようにとると、$\rm H$は$\triangle \rm ABC$の垂心であることを証明せよ。

問題4
$\rm OA=6,OB=4,\angle AOB=60°$である$\triangle \rm OAB$において、頂点$\rm A$から辺$\rm OB$に垂線$\rm AC$,頂点$\rm B$から辺$\rm OA$に垂線$\rm BD$を下ろす。線分$\rm AC$と線分$\rm BD$の交点を$\rm H$とするとき、$\overrightarrow{\rm OH}$を$\rm \overrightarrow{OA},\overrightarrow{OB}$を用いて表せ。
チャプター:

0:00 オープニング
0:04 問題1解説
8:26 問題2解説
11:47 問題3解説
16:54 問題4解説

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm OAB$において、辺$\rm OB$の中点を$\rm M$辺$\rm AB$を$1:2$に内分する点を$\rm C$、辺$\rm OA$を$2:3$に内分する点を$\rm D$、線分$\rm CM$と線分$\rm BD$の交点を$\rm P$とする。また、$\overrightarrow {\rm OA}=\vec{a},\overrightarrow{\rm OB}=\vec{b}$とする。
(1)$\overrightarrow{\rm OP}$を$\vec{a},\vec{b}$を用いて表せ。
(2)直線$\rm OP$と辺$\rm AB$の交点を$\rm Q$とするとき、$\rm AQ:QB$を求めよ。

問題2
$\rm OA=3, OC=2$である長方形$\rm OABC$がある。辺$\rm OA$を$1:2$に内分する点を$\rm D$、辺$\rm AB$を$3:1$に内分する点を$\rm E$とするとき、$\rm CD\perp OE$であることを証明せよ。

問題3
鋭角三角形$\rm ABC$の外心を$\rm O$、辺$\rm BC$の中点を$\rm M$とする。頂点$\rm A$から辺$\rm BC$に垂線$\rm AN$を下ろし、線分$\rm AN$上に点$\rm H$を$\rm AH=2OM$となるようにとると、$\rm H$は$\triangle \rm ABC$の垂心であることを証明せよ。

問題4
$\rm OA=6,OB=4,\angle AOB=60°$である$\triangle \rm OAB$において、頂点$\rm A$から辺$\rm OB$に垂線$\rm AC$,頂点$\rm B$から辺$\rm OA$に垂線$\rm BD$を下ろす。線分$\rm AC$と線分$\rm BD$の交点を$\rm H$とするとき、$\overrightarrow{\rm OH}$を$\rm \overrightarrow{OA},\overrightarrow{OB}$を用いて表せ。
投稿日:2024.12.19

<関連動画>

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑰2直線のなす鋭角を求める

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線$\sqrt3 x+3y-1=0, -x+\sqrt3 y-2=0$のなす鋭角$\alpha$を求めよ
この動画を見る 

【数C】ベクトルの基本⑫位置ベクトルの考え方

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
位置ベクトルの考え方についての動画です!
この動画を見る 

【数B】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して
$3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たすとする。
$\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }$とおく。
(1)$\overrightarrow{ BP }$を、$\overrightarrow{ b }$と$\overrightarrow{ AP }$を用いて表せ。
(2)$\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }$となる実数v,wを、tを用いて表せ。
(3)直線APと直線BCの交点をDとする。
$\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }$となる実数x,yを、tを用いて表せ。
(4)$\frac{S_2}{S_1}$を、tを用いて表せ。
(5)tが正の実数全体を動くとき、$\frac{S_2}{S_1}$が最大となるtの値を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 
PAGE TOP