高校入試なのに4次方程式!!山手学院 - 質問解決D.B.(データベース)

高校入試なのに4次方程式!!山手学院

問題文全文(内容文):
方程式を解け
$x^2(x+2)^2-11x^2-22x+24=0$

山手学院高等学校
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2(x+2)^2-11x^2-22x+24=0$

山手学院高等学校
投稿日:2024.04.23

<関連動画>

#10数検準1級1次 複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$z=-2-i$の偏角を$\theta$とする.
$\sin4\theta$の値を求めよ.
この動画を見る 

福田のおもしろ数学080〜虚数係数の2次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2次方程式 $x^2$+$ix$+2=0 を解け。
この動画を見る 

数学「大学入試良問集」【2−2 高次方程式と解】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\alpha=\displaystyle \frac{3+\sqrt{ 7 }\ i}{2}$とする。
ただし、$i$は虚数単位である。次の問いに答えよ。
(1)
$\alpha$を解にもつような2次方程式$x^2+px+q=0(p,q$は整数)を求めよ。

(2)
整数$a,b,c$を係数とする3次方程式$x^3+ax^2+bx+c=0$について、解の1つは$\alpha$であり、また$0 \leqq x \leqq 1$の範囲に実数解を1つもつとする。
このような整数の組$(a,b,c)$を全て求めよ。
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

東邦大(医)三次方程式が自然数解を持つ条件

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の整数である.
$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ一つもつとする.
$a$の値を求めよ.

2016東邦大(医)過去問
この動画を見る 
PAGE TOP