問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋 に分ける。
(ⅰ)部屋 に3人、部屋 に4人となる分け方は全部で何通りあるか。
(ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
(ⅲ)(ⅱ)のうち、部屋 の人数が奇数である分け方は全部で何通りあるか。
(2)
4人を三つの部屋 に分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。
(3)
大人4人、こども3人の計7人を三つの部屋 に分ける。
(ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
(ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
(ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋
(ⅰ)部屋
(ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
(ⅲ)(ⅱ)のうち、部屋
(2)
4人を三つの部屋
どの部屋も1人以上になる分け方は全部で何通りあるか。
(3)
大人4人、こども3人の計7人を三つの部屋
(ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
(ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
(ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋 に分ける。
(ⅰ)部屋 に3人、部屋 に4人となる分け方は全部で何通りあるか。
(ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
(ⅲ)(ⅱ)のうち、部屋 の人数が奇数である分け方は全部で何通りあるか。
(2)
4人を三つの部屋 に分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。
(3)
大人4人、こども3人の計7人を三つの部屋 に分ける。
(ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
(ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
(ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋
(ⅰ)部屋
(ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
(ⅲ)(ⅱ)のうち、部屋
(2)
4人を三つの部屋
どの部屋も1人以上になる分け方は全部で何通りあるか。
(3)
大人4人、こども3人の計7人を三つの部屋
(ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
(ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
(ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
投稿日:2021.03.27