東京工業大学 三次方程式 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東京工業大学 三次方程式 Japanese university entrance exam questions

問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
投稿日:2018.04.07

<関連動画>

【数C】【複素数平面】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が、$z+\dfrac 1z=2\cos\theta$を満たすとき、次の問いに答えよ。
(1)$z$を$\theta$を用いて表せ。
(2)$n$が自然数のとき、等式、$z^n+\dfrac{1}{z^n}=2\cos n\theta$が成り立つことを示せ。
この動画を見る 

日本大(医学部)複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i$

$\displaystyle \frac{(2+\alpha)^6}{\alpha^3}$の値を求めよ

出典:日本大学医学部 過去問
この動画を見る 

福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
この動画を見る 

福田の数学〜上智大学2024理工学部第1問(1)〜複素数の絶対値と三角関数の計算

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数 $z=(-3+2 \cos\theta )+(4+2 \sin \theta)i$ の絶対値は、$\theta = \theta_1$ のとき最小値 $\fbox{ア}$ をとる。このとき、 $\sin{\theta_1} = \frac{\fbox{イ}}{\fbox{ウ}}$ である。
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 
PAGE TOP