東京工業大学 三次方程式 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東京工業大学 三次方程式 Japanese university entrance exam questions

問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
投稿日:2018.04.07

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(2)

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$\alpha+\beta+\gamma=\alpha^2+\beta^2+\gamma^2=0$
を満たす。$\triangle ABC$はどのような三角形か。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 複素数zをz=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}とする。ただし、iは虚数単位とする。また、\\
a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3} とおく。次の問いに答えよ。\\
(1)z^7は有理数になる。その値を求めよ。\\
(2)z+z^2+z^3+z^4+z^5+z^6 は有理数になる。その値を求めよ。\\
(3)A=a+b+c は有理数になる。その値を求めよ。\\
(4)B=a^2+b^2+c^2 は有理数になる。その値を求めよ。\\
(5)C=ab+bc+ca は有理数になる。その値を求めよ。\\
(6)D=a^3+b^3+c^3-3abc は有理数になる。その値を求めよ。\\
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 
PAGE TOP