【数学】確率:センター試験(平成30年)本試 - 質問解決D.B.(データベース)

【数学】確率:センター試験(平成30年)本試

問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
チャプター:

0:00 本編開始
0:32 (3)の解説
2:09 (4)の解説

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
投稿日:2022.09.08

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の
試行(*)を繰り返し行うことを考える。
$(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.$

$(\textrm{i})$4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が
3人になる確率は$\boxed{\ \ オ\ \ }$である。
$(\textrm{ii})$5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する
生徒が2人になる確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

【高校数学】確率の例題~順列と組合せ使おうぜ~ 2-1.5【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
赤玉5個、白玉4個、青玉3個が入った袋から、玉を3個同時に取り出すとき、
次の確率を求めよ。
(a)すべての赤玉が出る確率
(b)赤玉1個と白玉2個が出る確率
(c)どの色の玉も出る確率

-----------------

2⃣
40人のクラスで委員長と副委員長を選ぶとき、特定の4人の中の2人が選ばれる
確率を求めよ。

-----------------

3⃣
SUNDAYの6文字を1列に並べるとき、次の確率を求めよ。
(a)両端が母音である確率
(b)SとYが隣り合う確率
(c)SがYよりも左側にある確率
この動画を見る 

【高校数学】 数A-31 条件付き確率③

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3つの箱$a,b,c$があり,それぞれに赤玉と白玉が右の表のように入っている.
無作為に1箱選んで1個の玉を取り出すとき,次の確率を求めよう.

①取り出した玉が赤玉である確率

②取り出した玉が赤玉のときに,それが箱$C$から取り出された確率

図は動画内参照
この動画を見る 

【高校数学】順列の例題~苦手な人はこれだけ完璧に~ 1-6.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)4個の記号○、△、□、×を1列に並べる方法は何通りあるか。

(2)7個の数字0,1,2,3,4,5,6から異なる5個を使って、5桁の整数を作るとき、
  次のような整数は何個できるか
  (a)整数
  (b)奇数
  (c)5の倍数
  (d)54000より大きい整数

(3)男子3人,女子2人が1列に並ぶとき、女子2人が隣り合うような並び方は、
 何通りあるか。
この動画を見る 
PAGE TOP