問題文全文(内容文):
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
$\boxed{1}$
正の整数$n$に対し、$n$の正の約数の個数を
$d(n)$とする。
たとえば、$6$の正の約数は$1,2,3,6$の$4$個なので、
$d(6)=4$である。また、
$f(n)=\dfrac{d(n)}{\sqrt n}$
とする。
(1)$f(2025)$を求めよ。
(2)素数$p$と正の整数$k$の組で
$f(p^k)\leqq f(p^{k+1})$を満たすものを求めよ。
(3)$f(n)$の最大値と、そのときの$n$を求めよ。
$2025$年一橋大学文系過去問題
投稿日:2025.05.05





