福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解

問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
投稿日:2021.04.24

<関連動画>

福田の数学〜立教大学2024年理学部第1問(4)〜係数が虚数の2次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$iを虚数単位とする。複素数zはz^{ 2 }=3-2\sqrt{10 }iを満たし、かつzの実部は正であるとする。$$$$このとき、zの実部は\boxed{ カ }であり、虚部は\boxed{ キ }である。$$
この動画を見る 

2022早稲田大(社)整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$

2022早稲田大過去問
この動画を見る 

複素関数論⑪ 三角形の周の複素積分 高専数学*3(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑪ 三角形の周の複素積分を解説していきます.
この動画を見る 

複素関数論⑫:複素積分の絶対値の評価(高専数学)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$C:z=z(t),a\leqq t\leqq b$とする.
$\vert \displaystyle \int_{c}^{} f(z)dz \vert\leqq \displaystyle \int_{a}^{b} \vert f(z(t)\dfrac{dz}{dt}\vert dt $
を示せ.
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 
PAGE TOP