問題文全文(内容文):
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
投稿日:2021.09.12