福田の数学〜京都大学2024年理系第6問〜桁数がn桁の数列の中に含まれる最高位1の項の割合 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第6問〜桁数がn桁の数列の中に含まれる最高位1の項の割合

問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
投稿日:2024.03.11

<関連動画>

福田の数学〜東京大学2025理系第3問〜平行四辺形を囲む長方形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed {3} $

平面四辺形$ABCD$において、

$\angle ABC = \dfrac {\pi} {6} , AB = a , BC = b , a \leqq b$とする。

次の条件を満たす長方形$EFGH$を考え、

その面積を$S$とする。

条件:点$A,B,C,D$はそれぞれ

$\quad$辺$EF,FG,GH,HE$上にある。

$\quad$ただし、辺はその両端の点も含むものとする。

(1)$\angle BCG=\theta$とするとき、

$S$を$a,b,\theta$を用いて表せ。

(2)$S$とりうる値の最大値を$a,b$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

#大阪医科大学2014

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sin^2 n\pi \ x \ dx$
$n:$自然数

出典:2014年大阪医科大学
この動画を見る 

大学入試問題#236 富山県立大学(2012) #背理法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$x^3-x^2+2x-1=0$の実数解は無理数であることを背理法を用いて示せ

出典:2012年富山県立大学 入試問題
この動画を見る 

筑波大 指数・対数関数の微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ

出典:筑波大学 過去問
この動画を見る 

【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 
PAGE TOP