福田の数学〜京都大学2024年理系第6問〜桁数がn桁の数列の中に含まれる最高位1の項の割合 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第6問〜桁数がn桁の数列の中に含まれる最高位1の項の割合

問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
投稿日:2024.03.11

<関連動画>

福田の数学〜整数部分の評価が難しい問題〜北里大学2023年医学部第1問(3)〜漸化式と整数部分の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。

2023北里大学医過去問
この動画を見る 

大学入試の因数分解 奈良大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
abc+ab+bc+ca+a+b+c+1

奈良大学
この動画を見る 

数学「大学入試良問集」【17−2 Sn入り漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$について、$S_n=\displaystyle \sum_{k=1}^n a_k$ $n=1,2,3,・・・,S_0=0$とおく。
$a_n=S_{n-1}+n・2^n$ $n=1,2,3,・・・$ が成り立つとき、次の各問いに答えよ。
(1)$S_n$を$n$の式で表せ。
(2)極限値$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{2^k}{a_k}$を求めよ。
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

中央大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023中央大学過去問題
$a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$
①$a_{n+2}+a_n=4a_{n+1}$を示せ
②$a_{n+1}+a_n$は3の倍数であることを示せ
③$a_{2023}$を3で割った余り
この動画を見る 
PAGE TOP