九州大 係数三乗根の三次方程式の解の個数 - 質問解決D.B.(データベース)

九州大 係数三乗根の三次方程式の解の個数

問題文全文(内容文):
$a \in \mathbb{R}(a$は実数$)$
$x^3-3\sqrt[ 3 ]{ 4-a^2 }x+2=0$
実数解の個数

出典:1964年九州大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \in \mathbb{R}(a$は実数$)$
$x^3-3\sqrt[ 3 ]{ 4-a^2 }x+2=0$
実数解の個数

出典:1964年九州大学 過去問
投稿日:2019.09.04

<関連動画>

面積比 2024専修大松戸

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
△EHI:▱ABCD=?
*図は動画内参照
この動画を見る 

大学入試問題#866「まあ、なんとかなるわな」 #東京女子医科大学(2005) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^8$を計算せよ

出典:2005年東京女子医科大学
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(2)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る 

静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る 
PAGE TOP