17兵庫県教員採用試験(数学:1-2番 不等式) - 質問解決D.B.(データベース)

17兵庫県教員採用試験(数学:1-2番 不等式)

問題文全文(内容文):
1⃣-(2)
$x^2-(2a+3)x+6a<0$を満たす整数解が3つとなるaの範囲
単元: #2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$x^2-(2a+3)x+6a<0$を満たす整数解が3つとなるaの範囲
投稿日:2020.07.20

<関連動画>

【問題を使いながらその場で解説!!】テストや模試で活きる数学の答案の作り方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$a$は定数とする。$0≦x≦4$における関数$f(x)=x^2-2ax+3a$について、次のものを求めよ。
(1)最大値
(2)最小値
この動画を見る 

北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る 

「二次方程式の解と共通解」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x$についての方程式$(k-1)x^2+2(k+3)x+k+6=0$の実数解がただ1つであるような定数$k$の値と、その時の実数解を求めよ。
この動画を見る 

慶應義塾高校 2次方程式解け

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2021-x)(2022-x) =2023 - x$

慶應義塾高等学校
この動画を見る 

【数Ⅰ】2次関数:2次方程式が重解を持つ条件をわかりやすく解説!

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
この動画を見る 
PAGE TOP