2021近畿大(医)二次関数と格子点(隠れ2021年問題) - 質問解決D.B.(データベース)

2021近畿大(医)二次関数と格子点(隠れ2021年問題)

問題文全文(内容文):
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$

(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.

2021近畿大(医)過去問
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$

(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.

2021近畿大(医)過去問
投稿日:2021.02.03

<関連動画>

気づくと爽快なルートの計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt {33} + \sqrt {21})(\sqrt {77}-7)$
この動画を見る 

平方根 整数部分と小数部分 2024明大中野

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$

2024明治大学付属中野高等学校
この動画を見る 

ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

慶應義塾高校 2次方程式解け

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2021-x)(2022-x) =2023 - x$

慶應義塾高等学校
この動画を見る 
PAGE TOP