福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
投稿日:2024.06.11

<関連動画>

福田の1.5倍速演習〜合格する重要問題017〜東北大学2016年度理系数学第6問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\int_0^{\pi}|\sin(t-x)-\sin2t|dt$
の区間$\ 0 \leqq x \leqq \pi\ $における最大値と最小値を求めよ。

2016東北大学理系過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ aは0 \lt a \leqq \frac{\pi}{4}を満たす実数とし、f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)\\
とする。このとき、次の問いに答えよ。\\
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。\\
(*)  \int_0^1f(x)dx=1\\
(2)0 \leqq b \lt c \leqq 1を満たす実数b,cについて、不等式\\
f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)\\
が成り立つことを示せ。\\
(3)次の試行を考える。\\
[試行]\ n個の数1,2,\ldots\ldots,nを出目とする、あるルーレットをk回まわす。\\
この試行において、各i=1,2,\ldots\ldots,nについてiが出た回数をS_{n,k,i}とし、\\
\\
(**)\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx\\
\\
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。\\
(4)(3)の[試行]において出た数の平均値をA_{n,k}とし、A_n=\lim_{k \to \infty}A_{n,k}とする。\\
(**)が成り立つとき、極限\lim_{n \to \infty}\frac{A_n}{n}をaを用いて表せ。
\end{eqnarray}

2022東京工業大学理系過去問
この動画を見る 

【数Ⅲ-155】定積分の部分積分法①

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。

①$\int_0^{\pi}x \sin x\ dx$

➁$\int_0^{1}xe^{-2x}\ dx$

③$\int_1^e\log x\ dx$
この動画を見る 

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る 

#大学への数学 学力コンテスト(3)「どこで技をかけにいくか・・・」 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sqrt{ \displaystyle \frac{x}{1+x} }(0 \leqq x \leqq 1)$
(1)
$f'(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin\ x-\sin^2x }\ dx$

(3)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin^3x-\sin^4x }\ dx$
この動画を見る 
PAGE TOP