福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小

問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
投稿日:2023.06.05

<関連動画>

ハルハルさんの作成問題「たぶん名作だと思います。難易度は高め」 図形 三角比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#式と証明#図形と計量#三角比への応用(正弦・余弦・面積)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\theta$:実数
3辺の長さが$2\sin\theta,\ 2\cos\theta,\ \displaystyle \frac{\tan\theta}{\sqrt{ 3 }}$の三角形が単位円に内接している。
この条件を満たしている三角形の面積をすべて求めよ。
この動画を見る 

練習問題3(数検準1級,教員採用試験 対数と相加相乗平均)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\sqrt x+ \sqrt y = 20$
$log_{10}x+log_{10}y$の最大値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

福田のおもしろ数学439〜整数変数の分数式が整数となる条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$m,n$が整数であるとき

$\dfrac{m^2+n^2}{mn}$

の取りうるすべての整数値を求めよ。
    
この動画を見る 

福田のおもしろ数学257〜3変数の不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c>0$, $abc=1$ のとき
\begin{equation*}
\left(a-1+\frac{1}{b}\right) \left(b-1+\frac{1}{c}\right) \left(c-1+\frac{1}{a}\right) \leq 1
\end{equation*}
を証明して下さい。
この動画を見る 
PAGE TOP