【高校数学】 数Ⅱ-158 関数の最大値・最小値③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-158 関数の最大値・最小値③

問題文全文(内容文):
①$0 \leqq x \lt 2π$のとき、関数$y=\cos 2x-2\cos^3x$の最大値と最小値、およびそのときのxの値を求めよう。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$0 \leqq x \lt 2π$のとき、関数$y=\cos 2x-2\cos^3x$の最大値と最小値、およびそのときのxの値を求めよう。
投稿日:2015.10.17

<関連動画>

#奈良教育大学(2008) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$

出典:2008年奈良教育大学
この動画を見る 

福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,

$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$

で定義されている。

$a_{2024}+b_{2024}\geqq 88$

であることを証明して下さい。
    
この動画を見る 

お茶の水女子大 101の100乗の下8桁を求めよ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$101^{100}$の下$8$桁を求めよ.

(類)お茶の水女子過去問
この動画を見る 

指数法則の利用

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=2022$ , $2^y=674$
$3^{\frac{x}{x-y}} =?$
この動画を見る 

福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP