問題文全文(内容文):
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。
2023東北大学理系過去問
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。
2023東北大学理系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。
2023東北大学理系過去問
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。
2023東北大学理系過去問
投稿日:2023.05.17