【中学数学】座標上の三角形の面積の演習問題~裏技の復習~ - 質問解決D.B.(データベース)

【中学数学】座標上の三角形の面積の演習問題~裏技の復習~

問題文全文(内容文):
動画内赤色の三角形の面積を求めよ。
チャプター:

00:00 はじまり

00:38 問題だよ

00:48 問題一問目

02:19 問題二問目

04:56 まとめ

05:15 問題と答え

単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内赤色の三角形の面積を求めよ。
投稿日:2020.12.16

<関連動画>

【高校受験対策】数学-死守31

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#確率#2次関数#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$13 + 3\times (- 6)$を計算せよ。

②$3(2a + 3) - 2(5a + 4)$ を計算せよ。

③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。

④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。

⑤ 1次方程式$3x-8=7x+16$を解け。

⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。

⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。

⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。

⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。

図は動画内参照
この動画を見る 

トイック満点講師森鉄に球の体積の公式を教えるよ

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#空間図形#円#三平方の定理#平面図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の体積の公式に関して解説していきます.
この動画を見る 

【高校受験対策】数学-規則性7

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・規則性7

Q.
白い碁石と黒い碁石がたくさんある。
これらの碁石を、右下の図のように白、黒、黒、白、黒、黒・・・と白1個・黒1個の順で、
1段目には1個、2段目には2個、3段目には3個・・・を矢印の方向に規則的に置いていく。
このとき、次の問いに答えなさい。

①8段目に置かれている碁石のうち、白い碁石は全部で何個か。

②1段目から15段目までに置かれている碁石のうち、3列目に置かれている 白い碁石は全部で何個か。

③$n$段目から$(n+2)$段目までに置かれている碁石の個数は、白と黒を 合わせると全部でア個であり、
そのうち白い碁石の個数はイ個である。ア,イに当てはまる数をそれぞれのを使って表せ。

④$x$段目に置かれている碁石のうち、白い碁石の個数が全部で20個となるときの、$x$の値を全て求めよ。
この動画を見る 

これみんな知ってた?

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】正多面体の性質~辺,面,頂点の数の求め方
この動画を見る 

【高校受験対策/数学】図形36

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形36

Q
右の図のように、線分$AB$を直径とする半円があり、$AB=8cm$とします。
弧$AB$上に点$C$を、$\angle ABC=30°$となるようにとります。
線分$AB$の中点を点$D$とし、点$D$を通り線分$AB$に垂直な直線と線分$BC$との交点を$E$とします。次の各問いに答えなさい。

①$\triangle ABC \backsim \triangle EBD$を証明しなさい。

②線分$DE$の長さを求めなさい。

③$△BCD$を、線分$AB$を軸として1回転させてできる立体の体積を求めなさい。
ただし、円周率は$\pi$を用いなさい。
この動画を見る 
PAGE TOP