福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式

問題文全文(内容文):
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。

(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$

(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$

(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。

2021青山学院大学理工学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。

(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$

(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$

(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。

2021青山学院大学理工学部過去問
投稿日:2021.09.11

<関連動画>

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART1

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

【数学B/平面ベクトル】垂直なベクトル・単位ベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ベクトル$\vec{ a }=(\sqrt{ 3 },-1)$に垂直な単位ベクトル$\vec{ e }$を求めよ。
この動画を見る 

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 
PAGE TOP