Euler’s formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理 - 質問解決D.B.(データベース)

Euler’s formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理

問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理
投稿日:2017.07.07

<関連動画>

福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(7) 三角方程式\\
0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\piにおいて\\
\cos y=\sin2x のグラフを描け。
\end{eqnarray}
この動画を見る 

【超難問】x-1=0が難しすぎる世界

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$x-1=0$
この動画を見る 

島根大(医】三角関数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.

1996京都大過去問
この動画を見る 
PAGE TOP