気付けば一瞬の確率 愛工大名電(愛知) - 質問解決D.B.(データベース)

気付けば一瞬の確率 愛工大名電(愛知)

問題文全文(内容文):
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
投稿日:2022.09.18

<関連動画>

福田の数学〜明治大学2024理工学部第1問(4)〜部屋分けの方法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$5$ 人の中学生 $\mathrm{A,B,C,D,E}$ と $3$ 人の高校生 $\mathrm{F,G,H}$ の合計 $8$ 人の生徒が、 $2$ つの部屋 $\mathrm{X,Y}$ に分かれて入る。ただし、どの生徒も必ずどちらかの部屋に入るものとする。
(a) どちらの部屋にも $1$ 人以上の生徒が入るような入り方は $\fbox{トナニ}$ 通りである。
(b) どちらの部屋にも $1$ 人以上の中学生が入るような入り方は $\fbox{ヌネノ}$ 通りである。
(c) どちらの部屋にも $1$ 人以上の中学生と $1$ 人以上の高校生が入るような入り方は $\fbox{ハヒフ}$ 通りである。
(d) どちらの部屋も中学生の人数が高校生の人数より多くなるような入り方は $\fbox{ヘホ}$ 通りである。ただし、どちらの部屋にも $1$ 人以上の高校生が入るものとする。
この動画を見る 

ポスターの並び替え 確率 仙台育英(宮城)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
I I E K U
の5枚のポスターがある。5枚すべてを使って並べて
I K U E I
となる確率を求めよ。

仙台育英
この動画を見る 

灘問!!懐かしいと感じるのは私だけ?2024

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
異なる5つのマスに黒石を1個ずつ置く
縦、横、斜めのうち少なくとも1列に3個の黒石が並ぶ並び方は全部で何通り?

2024灘中学校
この動画を見る 

【受験対策】  数学-文章題①

アイキャッチ画像
単元: #数A#整数の性質#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの数a.bはいずれも絶対値が2以下の整数で、『$ab \lt 0 , a+b \gt 0$』が 成り立っています。40-3bの値が最大となるとき、その値は?

②$(3+5\sqrt{ 2 })(a+15\sqrt{ 2 })$を計算したときの答えが整数となるような整数aを求めよう。

③xは27より小さい自然数です。
$27^2-x^2$の値を求めると、一の位の数字が0になりました。
これを満たすxをすべて書こう。

④りんごが9個、なしが3個あります。
これらの果物を3人で分けることにしました。
3人とも、果物の個数の合計が4個ずつになるように分ける分け方は、何通り?
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$10進法で表したときm桁$(m \gt 0)$である正の整数nの第i桁目$(1 \leqq i \leqq m)$を
$m_i$としたとき、$i\neq j$のとき$n_i\neq n_j$であり、かつ、次の$(\textrm{a})$または$(\textrm{b})$のいずれか
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。
$(\textrm{a})1 \leqq i \lt m$であるiに対して、
iが奇数の時$n_i \lt n_{i+1}$となり、
iが偶数の時$n_i \gt n_{i+1}$となる。
$(\textrm{b})1 \leqq i \lt m$であるiに対して、$i$が奇数の時$n_i \gt n_{i+1}$となり、
$i$が偶数の時$n_i \lt n_{i+1}$となる。

例えば、361は$(\textrm{a})$を満たす10進法3桁のデコボコ数であり、$52409$は$(\textrm{b})$を
満たす10進法5桁のデコボコ数である。なお、4191は$(\textrm{a})$を満たすが「$i\neq j$のとき
$n_i\neq n_j$である」条件を満たさないため、10進法4桁のデコボコ数ではない。
(1)nが10進法2桁の数$(10 \leqq n \leqq 99)$の場合、
$n_1\neq n_2$であれば$(\textrm{a})$または$(\textrm{b})$を
満たすため、10進法2桁のデコボコ数は$\boxed{\ \ アイ\ \ }$個ある。
(2)nが10進法3桁の数$(100 \leqq n \leqq 999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ ウエオ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ カキク\ \ }$個あるため、
10進法3桁のデコボコ数は合計$\boxed{\ \ ケコサ\ \ }$個ある。
(3)nが10進法4桁の数$(1000 \leqq n \leqq 9999)$の場合、$(\textrm{a})$を満たすデコボコ数は
$\boxed{\ \ シスセソ\ \ }$個、$(\textrm{b})$を満たすデコボコ数は$\boxed{\ \ タチツテ\ \ }$個あるため、
10進法4桁のデコボコ数は合計$\boxed{\ \ トナニヌ\ \ }$個ある。また10進法4桁のデコボコ数
の中で最も大きなものは$\boxed{\ \ ネノハヒ\ \ }$、最も小さなものは$\boxed{\ \ フヘホマ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP