【高校数学】 数B-23 ベクトルと図形① - 質問解決D.B.(データベース)

【高校数学】 数B-23 ベクトルと図形①

問題文全文(内容文):
3点A,B,Cが一直線上にある $\Leftrightarrow$ ①______となる実数kがある。

② △ABCにおいて、辺ABを3:1に内分する点をP、辺ACを1:2に内分する点をQ、 線分BQを1:2に内分する点をRとする。3点、P、R、Cが一直線上にあることを証明しよう。
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点A,B,Cが一直線上にある $\Leftrightarrow$ ①______となる実数kがある。

② △ABCにおいて、辺ABを3:1に内分する点をP、辺ACを1:2に内分する点をQ、 線分BQを1:2に内分する点をRとする。3点、P、R、Cが一直線上にあることを証明しよう。
投稿日:2015.12.15

<関連動画>

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る 

【理数個別の過去問解説】2016年度東北大学 数学 文系第1問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上で原点Oと3点A(3,1)B(1,2)C(-1,1)を考える。実数s,tに対し、点PをOP=sOA+tOBにより定める。
(1)s,tが条件$-1≦s≦1,-1≦t≦1,-1≦s+t≦1$を満たすとき点P(x,y)の存在する範囲Dを図示しよう。
(2)点Pが(1)で求めた範囲Dを動くとき、内積OP・OCの最大値を求め、そのときのPの座標を求めよう。
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

(1)$\triangle ABC$において$AB=6,AC=4,$

$\cos A=\dfrac{1}{4}$とする。

$\triangle ABC$の外心を$H$とし、直線$AH$が

$\triangle ABC$の外接円と交わる点のうち、

点$A$とは異なる点を$P$とする。

このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。

(2)$\triangle ABC$において$AB=5,AC=6,$

$\cos A=\dfrac{1}{5}$とする。

$\triangle ABC$の内心を$K$とし、

直線$AK$が$\triangle ABC$の内接円と

交わる点のうち、点$A$に近いほうの点を

$Q$とする。

このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 
PAGE TOP