【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
投稿日:2023.09.15

<関連動画>

【数Ⅰ】【2次関数】2次関数の平行移動4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+3$を、次の方向に平行移動して原点を通るようにした放物線の方程式を求めよ。
(1)y軸方向
(2)x軸方向
この動画を見る 

6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。

自治医科大過去問
この動画を見る 

福田の一夜漬け数学〜ルート計算のコツ(1)〜有理化と二重根号

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の分数を有理化せよ。
$\frac{\sqrt2+\sqrt3-\sqrt5}{\sqrt2-\sqrt3+\sqrt5}$

$\frac{\sqrt2+\sqrt5+\sqrt7}{\sqrt2+\sqrt5-\sqrt7}+\frac{\sqrt2-\sqrt5+\sqrt7}{\sqrt2-\sqrt5-\sqrt7}$

以下の2重根号を外し、最も簡単な数で表せ。
$\sqrt{4+2\sqrt3}$

$\sqrt{5-2\sqrt6}$

$\sqrt{5+\sqrt{24}}$

$\sqrt{4+\sqrt7}$

$\sqrt{10+5\sqrt3}$
この動画を見る 

【数Ⅰ】【2次関数】2次関数 条件付きの解 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数mの値の範囲を定めよ。
 (1) 2次関数 y=x²+mx+1において、yの値が常に正である。
 (2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
 (3) 関数 y=mx²+4x+m-3において、yの値が常に負である。

2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
この動画を見る 

【中学数学】平方根・ルートの色々な計算~代入する問題~ 2-7【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x=\sqrt{2}+1,y=\sqrt{2}-1$のとき、次の計算をしなさい
1⃣
$x^2-1$

2⃣
$x^2+2xy+y^2$
この動画を見る 
PAGE TOP