【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
投稿日:2023.09.15

<関連動画>

ざ・因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.(有理数係数)
$x^4+3x^2-6x+10$
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

【高校数学】整式③~展開の公式~ 1-3 【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) (2x+5)(3x+4)

(2) (a+b+c)²

(3) (x+1)²(x-1)²

(4) (a²+ab+b²)(a²-ab+b²)
この動画を見る 

【中学数学】平方根・ルートの色々な計算~代入する問題~ 2-7【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x=\sqrt{2}+1,y=\sqrt{2}-1$のとき、次の計算をしなさい
1⃣
$x^2-1$

2⃣
$x^2+2xy+y^2$
この動画を見る 

【高校数学】  数Ⅰ-89  正弦定理と余弦定理②

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
この動画を見る 
PAGE TOP