問題文全文(内容文):
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
投稿日:2019.03.19