中2数学「連立方程式の文章題⑥(池の周りの速さ)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「連立方程式の文章題⑥(池の周りの速さ)」【毎日配信】

問題文全文(内容文):
中2~連立方程式の文章題⑥~ (池の周りの速さ)

例題
1周2kmの池の周りを兄と弟が同じ位置から同時に 出発します。
反対方向に進むと、出発してから5分後に 2人は、初めて出会います。
また、 同じ方向に進むと 出発してから20分後に兄は、弟を追いこします。兄と弟の速さは、それぞれ分速何mですか。
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題⑥~ (池の周りの速さ)

例題
1周2kmの池の周りを兄と弟が同じ位置から同時に 出発します。
反対方向に進むと、出発してから5分後に 2人は、初めて出会います。
また、 同じ方向に進むと 出発してから20分後に兄は、弟を追いこします。兄と弟の速さは、それぞれ分速何mですか。
投稿日:2022.05.09

<関連動画>

佐賀県立高校入試2021年2⃣連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
この動画を見る 

【中2 数学】  2-②② 連立方程式の利用(食塩水)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(食塩水)
次の問に答えよ
① $190$ gの水に $10$ gの食塩をとかしたとき、食塩水の濃度は?
② $7$ %の食塩水 $300$ gにとけている食塩は?
③ $8$ %と $15$ %の食塩水をまぜて、$10$ %の食塩水を $700$ g作ります。
 それぞれ何g必要か?
この動画を見る 

【中学数学】規則性の裏技~n番目を一瞬で求めます~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数学(中学生)#中1数学#中2数学#中3数学#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】規則性の裏技紹介動画です
この動画を見る 

文字式:久留米大学付属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附属高等学校

$a=\sqrt{ 3 }+\sqrt{ 15 }$
$b=\sqrt{ 3 }-\sqrt{ 15 }$
のとき
→$\displaystyle \frac{a^2-ab+b^2}{a^2+ab+b^2}$
の値を求めよ。
この動画を見る 

【挑戦しよう!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$

の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$

慶應義塾高校過去問
この動画を見る 
PAGE TOP