数列・合同式 前橋工科大 - 質問解決D.B.(データベース)

数列・合同式 前橋工科大

問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$

(1)
$a_n$

(2)
$\displaystyle \sum_{k=1}^n a_k$

(3)
$a_n+n-2$は4つの倍数を示せ

出典:2000年前橋工科大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$

(1)
$a_n$

(2)
$\displaystyle \sum_{k=1}^n a_k$

(3)
$a_n+n-2$は4つの倍数を示せ

出典:2000年前橋工科大学 過去問
投稿日:2019.11.10

<関連動画>

弘前大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$3^{3n-2}+5^{3n-1}$は7の倍数であることを証明せよ。(n自然数)
この動画を見る 

整数問題(フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
この動画を見る 

麻布獣医 整数 素数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$素数、$a,b$自然数
$P=a^3+2a^2b-2ab^2-b^3$
$P$の1の位の数を求めよ

出典:麻布大学獣医学部 過去問
この動画を見る 

図形問題にみえて実は〇〇問題 慶應義塾高校

アイキャッチ画像
単元: #数Ⅰ#数A#図形と計量#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは3以上の整数とする。
正n角形の1つの内角をx°とするときxの値が整数となる正n角形は何個?

慶應義塾高等学校
この動画を見る 

東京女子医科大 整数問題

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{n^2}{m}+\dfrac{m}{n}=8$
をみたす自然数$(m,n)$をすべて求めよ.

東京女子医科大過去問
この動画を見る 
PAGE TOP