福田の数学〜単なる不等式の問題と思ったら大間違い〜慶應義塾大学2023年環境情報学部第1問(2)〜有理数と不等式 - 質問解決D.B.(データベース)

福田の数学〜単なる不等式の問題と思ったら大間違い〜慶應義塾大学2023年環境情報学部第1問(2)〜有理数と不等式

問題文全文(内容文):
正の整数$m$と$n$は、不等式
$\frac{2022}{2023}<\frac{m}{n}<\frac{2023}{2024}$
を満たしている。このような分数$\frac{m}{n}$の中で$n$が最小のものを求めよ。

2023慶應義塾大学環境情報学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数$m$と$n$は、不等式
$\frac{2022}{2023}<\frac{m}{n}<\frac{2023}{2024}$
を満たしている。このような分数$\frac{m}{n}$の中で$n$が最小のものを求めよ。

2023慶應義塾大学環境情報学部過去問
投稿日:2023.12.09

<関連動画>

9つの正方形と角の和

アイキャッチ画像
単元: #数学(中学生)#中2数学#数Ⅰ#数A#図形の性質#図形と計量#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b +\angle c=? $
*図は動画内参照
この動画を見る 

福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

福井大 漸化式と整数問題の融合

アイキャッチ画像
単元: #数Ⅰ#整数の性質#約数・倍数・整数の割り算と余り・合同式#漸化式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
この動画を見る 

【高校数学】  数Ⅰ-79  三角比④ ・ 暗記編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。

$\begin{array}{|c|c|c|}
\hline
\theta & 0° & 30° & 45° & 60° & 90° & 120° & 135° & 150° & 180° \\
\hline
\sin\theta & & \\
\hline
\cos\theta & & \\
\hline
\tan\theta & & \\
\hline

\end{array}$

この動画を見る 
PAGE TOP