【数B】空間ベクトル:球面の方程式! - 質問解決D.B.(データベース)

【数B】空間ベクトル:球面の方程式!

問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説(1)
2:18 問題解説(2)
4:00 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
投稿日:2020.10.31

<関連動画>

【平面の方程式の求め方はこれ!】平面の方程式の求め方を2つ解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式の求め方について解説します。
この動画を見る 

【数C】【空間ベクトル】四面体OABCにおいて、OA=OB、→OC⊥→ABとする。(1) AC=BCであることを証明せよ(2) 三角形ABCの重心をGとするとき、→OG⊥→ABであることを証明せよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP