【数C】空間ベクトル:球面の方程式! - 質問解決D.B.(データベース)

【数C】空間ベクトル:球面の方程式!

問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説(1)
2:18 問題解説(2)
4:00 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
投稿日:2020.10.31

<関連動画>

【数C】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【空間ベクトル】平面の方程式 3点を通る

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
この動画を見る 

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
この動画を見る 

鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
この動画を見る 
PAGE TOP