【数C】空間ベクトル:球面の方程式! - 質問解決D.B.(データベース)

【数C】空間ベクトル:球面の方程式!

問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説(1)
2:18 問題解説(2)
4:00 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
投稿日:2020.10.31

<関連動画>

福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑲空間ベクトルにおける三角形の面積

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A$(-2,1,3),B=(-3,1,4),C=(-3,3,5)$が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

【数B】空間ベクトル:平面の方程式の求め方(①法線ベクトルを用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 

【数C】ベクトル:二点を通る直線・空間版

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る 

鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
この動画を見る 
PAGE TOP