微分法と積分法 数Ⅱ 微分と接線3【マコちゃんねるがていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ 微分と接線3【マコちゃんねるがていねいに解説】

問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
チャプター:

0:00 オープニング
0:04 まず微分
1:04 1つ目のポイント(グラフの交点を出す方法)
2:14 2つ目のポイント(方程式の解とグラフの交点)
3:14 因数定理により3次方程式を解く
4:28 実際に3次式を解いてみる(高次式の割り算)

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
投稿日:2024.01.18

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)xyz空間において|x|+|y|+|z| \leqq 1を満たす立体の体積は\ \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ である。\\
(2)aを実数としたとき、xyz空間において\\
|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0\ \ \ \\
を満たす立体の体積V(a)は\\
\\
(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ のとき、V(a)=0,\\
\\
(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0\ のとき、V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},\\
\\
(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},\\
\\
(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},\\
\\
(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a\ のとき、V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第4問〜2つの三角関数のグラフで囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 0 \lt a \lt 4とする。曲線\\
C_1:y= 4\cos^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2}),\\
C_2:y=a-\tan^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
は、ちょうど2つの共有点をもつとする。\\
(1)aの値を求めよ。\\
(2)C_1とC_2で囲まれた部分の面積を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(1)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2-2mx-m+2=0$ が次のような解をもつとき、定数$m$の
値の範囲を求めよ。

(1)異なる2つの正の解
(2)異なる2つの負の解
(3)異符号の解
(4)2つの0以上の解
(5)2つの0以下の解
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 

解けるように作られた9次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x=2+3(2+3x^3)^3$
この動画を見る 
PAGE TOP