福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)xを変数とする2次方程式\ x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0\ が\\
異なる2つの実数解をもつような実数\thetaの範囲は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)xを変数とする2次方程式\ x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0\ が\\
異なる2つの実数解をもつような実数\thetaの範囲は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}
投稿日:2022.06.27

<関連動画>

三角関数 数Ⅱ三角関数の等式不等式(周期が変わる場合)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\cos (2θ-\displaystyle \frac{π}{3})=\displaystyle \frac{1}{2}$

(2) $\sin (2θ+\displaystyle \frac{π}{6})=\displaystyle \frac{1}{\sqrt{2}}$

(3) $\cos (2θ+\displaystyle \frac{π}{4})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (2θ+\displaystyle \frac{π}{3})\geqq -\displaystyle \frac{1}{\sqrt{3}}$
この動画を見る 

三角関数 数Ⅱ三角比の相互関係3【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$sinθ+cosθ=\frac{1}{2}$のとき,次の式の値を求めよ。
(1) $\tan θ+\displaystyle \frac{1}{\tan θ}$
(2) $\tan^3 θ+\displaystyle \frac{1}{\tan^3 θ}$
この動画を見る 

三角関数 数Ⅱ三角比の相互関係4【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$π \lt θ \lt \frac{3π}{2}$とする。

$\sin θ\cos θ=\frac{1}{4}$のとき,次の式の値を求めよ。

(1)$\sin θ+\cos θ$

(2)$\sin θ、\cos θ$
この動画を見る 

福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1](1)次の問題Aについて考えよう。\\
問題A 関数y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
\\
\sin\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{1}{2} であるから、三角関数の合成により\\
y=\boxed{\ \ イ\ \ }\sin(\theta+\frac{\pi}{\boxed{\ \ ア\ \ }})\\
\\
と変形できる。よって、yは\theta=\frac{\pi}{\boxed{\ \ ウ\ \ }}で最大値\boxed{\ \ エ\ \ }をとる。\\
\\
(2)pを定数とし、次の問題Bについて考えよう。\\
問題B 関数y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
(\textrm{i})p=0のとき、yは\theta=\frac{\pi}{\boxed{\ \ オ\ \ }}で最大値\boxed{\ \ カ\ \ }をとる。\\
\\
(\textrm{ii})p \gt 0のときは、加法定理\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alphaを用いると\\
y=\sin\theta+p\cos\theta=\sqrt{\boxed{\ \ キ\ \ }}\cos(\theta-\alpha)\\
\\
と表すことができる。ただし\alphaは\sin\alpha=\frac{\boxed{\ \ ク\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, \cos\alpha=\frac{\boxed{\ \ ケ\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, 0 \lt \alpha \lt \frac{\pi}{2}\\
\\
を満たすものとする。このとき、yは\theta=\boxed{\ \ コ\ \ }で最大値\sqrt{\boxed{\ \ サ\ \ }}をとる。\\
\\
(\textrm{iii})p \lt 0のとき、yは\theta=\boxed{\ \ シ\ \ }で最大値\sqrt{\boxed{\ \ ス\ \ }}をとる。\\
\\
\\
\boxed{\ \ キ\ \ }~\boxed{\ \ ケ\ \ }、\boxed{\ \ サ\ \ }、\boxed{\ \ ス\ \ }の解答群\\
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\
\\
\\
\boxed{\ \ コ\ \ }、\boxed{\ \ シ\ \ }の解答群\\
⓪0    ①\alpha    ②\frac{\pi}{2}\\
\end{eqnarray}
この動画を見る 
PAGE TOP