信州大(医)変な数列 - 質問解決D.B.(データベース)

信州大(医)変な数列

問題文全文(内容文):
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$

(1)
$a_{24}$を求めよ

(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。

出典:2010年信州大学医学部 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$

(1)
$a_{24}$を求めよ

(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。

出典:2010年信州大学医学部 過去問
投稿日:2019.05.17

<関連動画>

【高校数学】 数B-78 数列の和と一般項①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とすると,
$a_1=S_1,n\geqq 2$のとき,$a_n=①$

初項から第$n$項までの和$S_n$が次の式で表される数列$\{a_n\}$の一般項を求めよう.

②$n^2-4n$

③$3^n-1$
この動画を見る 

頑張って解いてほしい自作問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{111・・・・・・11}^{100桁}$
$243$で割った余りを求めよ.
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

高専数学 微積II #32(2) 級数の収束条件

単元: #数Ⅱ#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(1+x)^{n-1}}$
が収束するように$x$の範囲を定め,
その和を求めよ.
この動画を見る 

広島県立 特殊な漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#県立広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島県立大学過去問題
各項が正の数列{$a_n$}
初項~第n項の和を$S_n$
$a_1^3+a_2^3+a_3^3+\cdots+a_n^3=2S_n^2$が成り立つ
(1)$a_n^2+2a_n=4S_n$が成り立つことを示せ。
(2)一般項$a_n$と$S_n$を求めよ。
この動画を見る 
PAGE TOP