【数学】中高一貫校問題集2幾何113:円:内接四角形:四角形が内接することの証明2 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集2幾何113:円:内接四角形:四角形が内接することの証明2

問題文全文(内容文):
図のように、交わる2つの円O、O'の交点をP、Qとする。また、Pを通る直線と円O、O'の交点をそれぞれA、Bとし、Qを通る直線と円O、O'との交点をそれぞれC、Dとする。△EBDが二等辺三角形のとき、四角形ABDCは円に内接することを証明しなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:33 解説+証明
1:41 エンディング

単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、交わる2つの円O、O'の交点をP、Qとする。また、Pを通る直線と円O、O'の交点をそれぞれA、Bとし、Qを通る直線と円O、O'との交点をそれぞれC、Dとする。△EBDが二等辺三角形のとき、四角形ABDCは円に内接することを証明しなさい。
投稿日:2023.10.06

<関連動画>

中学生向け「どっちがでかい?」

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{10^{2021}+1}{10^{2022}+1}$ VS $ \dfrac{10^{2022}+1}{10^{2023}+1}$
どちらが大きいか?
この動画を見る 

これ知ってた?

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(x+a)^{ 2 }=x^{ 2 }+2ax+a^{ 2 }$の考え方
この動画を見る 

【解法のテクニック…!】二次方程式:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#同志社国際高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
同志社国際高等学校の入試から、二次方程式の問題です。

全国の入試問題から、意図が分かりやすい大切な問題に絞って、ひたすら解きまくっていきます。
傾向と対策のために、軽い頭の体操のために、あるいは、時間つぶしのためにどうぞ。
チャンネル登録は、こちらで。
/ @math_shirotan

X、tik tok、Instagramのフォローもお願いします!

#高校受験 #高校入試 #数学

音楽素材:
音楽 → 「たうろんの!成りあ音楽!」
FREE BGM DOVA-SYNDROME
フリー音楽素材 魔王魂

We are introducing the entrance exam questions for Japanese high schools.
It's an important issue for you to understand the basics of mathematics.
Would you like to solve this math problem and check out our commentary?
この動画を見る 

最後まで油断するなよ因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$2(x^2-1)-6x^2+6$
この動画を見る 

【高校受験対策】数学-図形12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
この動画を見る 
PAGE TOP