福田のわかった数学〜高校3年生理系102〜大小比較(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系102〜大小比較(2)

問題文全文(内容文):
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
投稿日:2021.12.07

<関連動画>

東大 ヨビノリ みたび登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'95東京大学過去問題
全ての正の実数にx,yに対し$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$が成り立つような実数kの最小値
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(2)〜極値をとる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)関数$f(t)$=$a\cos^3t$+$\cos^2t$が$t$=$\frac{\pi}{4}$で極値をとるとき、$a$=$\boxed{\ \ イ\ \ }$である。
この動画を見る 

弘前大 微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.

弘前大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
この動画を見る 

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 
PAGE TOP