#電気通信大学(2023) #不定積分 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2023) #不定積分 #Shorts

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{\sqrt{ 1-x^2 }} dx$

出典:2023年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{\sqrt{ 1-x^2 }} dx$

出典:2023年電気通信大学
投稿日:2024.05.27

<関連動画>

産業医科大 区分求積法を使わなくても出せるよ

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\dfrac{1^4+2^4+3^4+・・・・+n^4}{n^5}$
これを求めよ。

産業医科大過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第4問〜サイコロの目で決まる複素数の値に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$を虚数単位とし、$z=\frac{1}{2}+\frac{\sqrt3}{2}\ i\$とおく。
さいころを3回ふり、出た目を順に$a,\ b,\ c$とする。
このとき、積$\ abc$が3の倍数となる確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。
また、$z^{abc}=-1$となる確率は$\frac{\boxed{オカ}}{\boxed{キクケ}}$であり、
$z^{abc}=1$となる確率は$\frac{\boxed{コサシ}}{\boxed{スセソ}}$である。

2022明治大学全統理系過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第1問〜関数方程式と剰余定理因数定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ P(x)をxについての整式とし、P(x)P(-x)=P($x^2$)はxについての恒等式であるとする。
(1)P(0)=0またはP(0)=1 であることを示せ。
(2)P(x)がx-1で割り切れないならば、P(x)-1はx+1で割り切れることを示せ。
(3)次数が2であるP(x)を全て求めよ。

2023北海道大学文系過去問
この動画を見る 

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
この動画を見る 
PAGE TOP