#電気通信大学(2023) #不定積分 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2023) #不定積分 #Shorts

問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{\sqrt{ 1-x^2 }} dx$

出典:2023年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{\sqrt{ 1-x^2 }} dx$

出典:2023年電気通信大学
投稿日:2024.05.27

<関連動画>

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 

東工大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ

(2)
$a$の素因数は3と5以外にないことを示せ

(3)
$a$を求めよ

出典:2006年東京工業大学 過去問
この動画を見る 

日本医科大学 6次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
*$x^6+2x^5-38x^4+228x^2+72x-216=0$
$Z=x+\frac{α}{x}$とし*をZの3次方程式としてxを求めよ
この動画を見る 

東大入試問題 無限級数 数列の和 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学過去問題
無限級数
$\frac{r}{1-r^2}$+$\frac{r^2}{1-r^4}$+$\frac{r^4}{1-r^8}$+$\cdots$+$\frac{r^{2^{n-1}}}{1-r^{2^{n}}}$
この動画を見る 

9で割り切れるのはなぜ?京都大(改)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^9 - n^3$は9で割り切れるのはなぜ?(n:整数)

京都大学
この動画を見る 
PAGE TOP