福田の数学〜早稲田大学2021年教育学部第1問(4)〜箱に玉を入れる場合の数 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年教育学部第1問(4)〜箱に玉を入れる場合の数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}

2021早稲田大学教育学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}

2021早稲田大学教育学部過去問
投稿日:2021.06.01

<関連動画>

【全パターンまとめ】確率の全パターンをすべて解説!!【高校数学 数学】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

10本のクジの中にアタリが4本ある。
同時に「3本」引くとき、少なくとも1本はアタリが出る確率は?


動画の図のような色と数字が書かれた玉が袋に入っている。
この袋から玉を1つ取り出す。
取り出した玉が赤色であった時に書かれている数が偶数である確率は?
この動画を見る 

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(4)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)大小2個のさいころを同時に投げる。大きいサイコロのでた目を$a$、小さいサイコロのでた目を$b$とするとき、$\displaystyle\frac{a}{b}$が整数になる確率は$\boxed{\ \ エ\ \ }$である。
この動画を見る 

橋本環奈に年賀状届く確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
片っ端から住所書いて橋本環奈に年賀状が届く確率は?
この動画を見る 

早稲田大学 赤n-7個、白7個、5個取り出して赤3白2の確率 Pnを最大にするnを求める Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
袋の中に赤玉n-7個、白玉7個の合計n個の玉が入っている。
ただし,$n \geqq 10$とする。この袋から一度に5個の玉を取り出したとき、
赤玉が3個、白玉が2個取り出される確率を$P_n$とする。$P_n$が最大となるnの値を求めよ。
この動画を見る 
PAGE TOP