大学入試問題#860「これ、ええ問題」 #立教大学 #極限 - 質問解決D.B.(データベース)

大学入試問題#860「これ、ええ問題」 #立教大学 #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin(1-\cos x)}{x^2}$

出典:立教大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin(1-\cos x)}{x^2}$

出典:立教大学 入試問題
投稿日:2024.06.26

<関連動画>

順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
この動画を見る 

早稲田 学習院 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
$x^3+y^3=3xy$ (x,y実数)
x+yのとりうる範囲

早稲田大学過去問題
$a_1$~$a_n$整数
$x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_{n-1}x+a_n=0$
整数係数のn次方程式、解が有理数ならその解は整数である。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の
試行(*)を繰り返し行うことを考える。
$(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.$

$(\textrm{i})$4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が
3人になる確率は$\boxed{\ \ オ\ \ }$である。
$(\textrm{ii})$5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する
生徒が2人になる確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第1問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の条件を満たす係数が整数の多項式 $f(x)$ を考える。
(I) $f(0)$ は4で割り切れない。
(II) 方程式$f(x) = 0 $は$ x = 1 $で重解をもつ。
(III) 方程式$f(x)=x(x-1)(x-2)$ は異なる整数解をもつ。
このとき、$f(4)$ を36で割ったときの余りを求めよ。

2023浜松医科大学医過去問
この動画を見る 

法政大・お茶の水女子大 高次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^6+\alpha^5-9\alpha^4-10\alpha^3-9\alpha^2+\alpha+1=0$
6つの解を求めよ

$x^4-6x^3-x^2+18x+9=0$
4つの解を求めよ

出典:法政大学 お茶の水女子大学 過去問
この動画を見る 
PAGE TOP