福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法

問題文全文(内容文):
${\large\boxed{1}}$(1)数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a_2=4$
$(\textrm{ii})a_{n+2}=a_n^{\log_2a_{n+1}} (n=1,2,3,\ldots)$
このとき、$\log_2(\log_2a_{10})=\boxed{\ \ ア\ \ }$である。

2022早稲田大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a_2=4$
$(\textrm{ii})a_{n+2}=a_n^{\log_2a_{n+1}} (n=1,2,3,\ldots)$
このとき、$\log_2(\log_2a_{10})=\boxed{\ \ ア\ \ }$である。

2022早稲田大学商学部過去問
投稿日:2022.08.15

<関連動画>

香川大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年香川大学過去問

$a_1=1$,$a_2=3$

$a_{n+2}=a_{n+1}^2a_{n}^3$

数列{$a_{n}$}の一般項を求めよ
この動画を見る 

福田のおもしろ数学309〜自然数から自然数への関数f(n)に関する関数方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$$自然数を自然数へ写す関数f(n)が次を満たす。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow \frac{1}{f(a)}+\frac{1}{f(b)}=\frac{1}{f(c)}$$
$$このような関数f(n)をすべて求めて下さい。$$
この動画を見る 

【数B】【数列】a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。
この動画を見る 

福田のおもしろ数学351〜漸化式で定まる数列の第2025項の取り得る値の個数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1 = 1, a_{n+1} + a_n = ( a_{n+1} - a_n )^2$ で定まる、すべての項が正の数列 $\{ a_n \}$ に対し $a_2025$ の取りうる値は何個あるか。
この動画を見る 

【数B】数列:漸化式と数学的帰納法:三項間漸化式 PRIME B 85(1)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のように定められた数列${a_n}$の一般項を求めよ。
$a_1=1$,$a_2=2$,$a_{n+2}=4a_{n+1}-3a_{n}$
この動画を見る 
PAGE TOP