【数C】平面ベクトル:角の二等分線上の位置ベクトル(神戸大学) - 質問解決D.B.(データベース)

【数C】平面ベクトル:角の二等分線上の位置ベクトル(神戸大学)

問題文全文(内容文):
平面上に原点Oから出る、相異なる2本の半直線OX、OY(∠XOY<180°)上にそれぞれOと異なる2点A,Bをとる。
(1)a=OA, b=OBとする。点Cが∠XOYの二等分線上にあるとき、OCを実数t(t≧0)とa, bで表せ。
(2)∠XOYの二等分線と∠XABの二等分線の交点をPとする。OA=2, B=3, AB=4のとき、OPをa, bで表せ。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題文の図示
0:32 二等分線上はひし形、単位ベクトルの利用
1:46 問題解説(2)
4:17 傍心について
4:30 名言

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上に原点Oから出る、相異なる2本の半直線OX、OY(∠XOY<180°)上にそれぞれOと異なる2点A,Bをとる。
(1)a=OA, b=OBとする。点Cが∠XOYの二等分線上にあるとき、OCを実数t(t≧0)とa, bで表せ。
(2)∠XOYの二等分線と∠XABの二等分線の交点をPとする。OA=2, B=3, AB=4のとき、OPをa, bで表せ。
投稿日:2021.09.15

<関連動画>

【高校数学】日本大学の過去問演習~指数・対数の問題~【大学受験】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
日本大学の過去問演習 指数・対数の問題の解説動画です
この動画を見る 

#藤田保健衛生大学2012 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$a \gt 0,b \gt 0$
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{\{ax+b(1-x\}^2)} dx$

出典:2010年藤田保健衛生大学
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。

2018京都大学理系過去問
この動画を見る 

数学「大学入試良問集」【19−15 ガウス記号と極限・区分求積法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$x$を越えない最大の整数を$\lbrack x \rbrack$で表す。
$n$を正の整数とし、$a_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{\lbrack \sqrt{ 2n^2-k^2 } \rbrack}{n^2}$とおく。
このとき、$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 
PAGE TOP