【数Ⅲ】【微分とその応用】関数の最大と最小11 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数の最大と最小11 ※問題文は概要欄

問題文全文(内容文):
一直線をなす海岸の地点Aから海岸線に垂直に9km離れた沖の船にいる人が、Aから海岸にそって15km離れた地点Bに最短時間で到着するためには、AB間のAからどれだけ離れた地点に上陸すればよいか。ただし、地点B以外で上陸した場合、上陸した後は歩いて地点Bに向かうものとし、船の速さは4km/h、人の歩く速さは5km/hとする。
チャプター:

0:00 オープニング
0:03 問題概要
0:45 状況設定
1:55 表に整理していく
2:30 微分
4:10 増減表の作成
4:25 解答

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
一直線をなす海岸の地点Aから海岸線に垂直に9km離れた沖の船にいる人が、Aから海岸にそって15km離れた地点Bに最短時間で到着するためには、AB間のAからどれだけ離れた地点に上陸すればよいか。ただし、地点B以外で上陸した場合、上陸した後は歩いて地点Bに向かうものとし、船の速さは4km/h、人の歩く速さは5km/hとする。
投稿日:2025.03.01

<関連動画>

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 

【数Ⅲ-177(最終回)】速度と道のり②(平面運動編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり②・平面運動編)

ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は

$S=$ ①



平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
この動画を見る 

【高校数学】数Ⅲ-123 第2次導関数とグラフ④

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(第2次導関数とグラフ④)

①$x^2-xy-y+x+2=0$の漸近線を求めよ。
➁$y=(\log x)^2$の概形を書け。
この動画を見る 

【数Ⅲ】うまく式変形できる?【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。

横浜市大過去問
この動画を見る 
PAGE TOP