一橋大 三次関数と接点 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

一橋大 三次関数と接点 Mathematics Japanese university entrance exam

問題文全文(内容文):
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)

(1)
直線$PQ$の式($a,b$を用いて)

(2)
$P,Q$の座標($a,b$を用いて)

(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲

出典:一橋大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)

(1)
直線$PQ$の式($a,b$を用いて)

(2)
$P,Q$の座標($a,b$を用いて)

(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲

出典:一橋大学 過去問
投稿日:2019.04.05

<関連動画>

福島大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
この動画を見る 

中学生向け「どっちがでかい?」

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\dfrac{10^{2021}+1}{10^{2022}+1}$ VS $\dfrac{10^{2022}+1}{10^{2023}+1}$
この動画を見る 

大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$

出典:2012年広島市立大学 入試問題
この動画を見る 

福田の数学〜中央大学2021年理工学部第1問〜斜回転

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$放物線$C:y=x^2$上の点$(a,\ a^2)$ $(a \gt 0)$における法線lの方程式を$y=f(x)$
とおくと、$f(x)=\boxed{\ \ ア\ \ }$となる。またCとlの交点のうちPと異なる方の点Qを
求めると、$Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)$となる。以下、Cとlで囲まれた部分をDとし、
Dをlの周りに1回転して得られる回転体の体積$V(a)$を求める。Dに含まれるl上
の点を$R(t,\ f(t))$ $(\boxed{\ \ イ\ \ }$ $\leqq t \leqq a)$とおく。Rを通りlに垂直な直線は
$y=2a(x-t)+f(t)$で与えられる。この直線と$y=x^2$の2つの交点のうち
Dに含まれる方の点Sのx座標は$x=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}$ となる。このとき
線分RSの長さ$r=g(t)$は$g(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})$となる。
線分QRの長さ$s=h(t)$は$h(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })$で与えられるので、
$V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt$
$=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt$
となる。ここで$u=\sqrt{a-t}$とおいて置換積分を行えば
$V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }$
が求まる。さらに、$a \gt 0$の範囲で$a$を動かすとき、$\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty$
であり、$V(a)$を最小にするaの値は$a=\boxed{\ \ キ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
ⓐ$-\frac{2}{a}(x-a)+a^2$ ⓑ$-\frac{1}{a}(x-a)+a^2$ ⓒ$-\frac{1}{2a}(x-a)+a^2$ ⓓ$-2a(x-a)+a^2$

$\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }$の解答群
ⓐ$-\frac{a^2-1}{a}$ ⓑ$-\frac{2a^2-1}{2a}$ ⓒ$-\frac{a^2+1}{a}$ ⓓ$-\frac{2a^2+1}{2a}$
ⓔ$\frac{\sqrt{a^2+4}}{2}$ ⓕ$\sqrt{a^2+1}$ ⓖ$\sqrt{4a^2+1}$ ⓗ$2a$
ⓘ$\frac{\sqrt{4a^2+1}}{2a}$ ⓙ$\frac{\sqrt{a^2+4}}{a}$ ⓚ$\frac{\sqrt{a^2+1}}{a}$ ⓛ$\frac{\sqrt{a^2+1}}{2a}$
ⓜ$\sqrt{\frac{2a^2+1}{2a}}$ ⓝ$\sqrt{\frac{4a^2+1}{2a}}$ ⓞ$\sqrt{\frac{2a^2+1}{a}}$ ⓟ$\sqrt{\frac{4a^2+1}{a}}$

$\boxed{\ \ カ\ \ }$の解答群
$ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi$

$\boxed{\ \ キ\ \ }$の解答群
$ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4$

2021中央大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
この動画を見る 
PAGE TOP