福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(2)点(2,\ 4)がDに含まれる確率は\hspace{150pt}\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\hspace{230pt}\\
点(2,\ 3)がDに含まれる確率は\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}である。\hspace{90pt}
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(2)点(2,\ 4)がDに含まれる確率は\hspace{150pt}\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\hspace{230pt}\\
点(2,\ 3)がDに含まれる確率は\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}である。\hspace{90pt}
\end{eqnarray}
投稿日:2022.10.02

<関連動画>

福田のわかった数学〜高校1年生090〜確率(10)反復試行の確率(4)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(10) 反復試行(4)\\
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて\\
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に\\
Aに戻った時を上がりとする。次の確率を求めよ。\\
(1)ちょうど1周で上がり  (2)ちょうど2周で上がり
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(3)〜一列に並べる(後編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 6個の文字A,A,A,B,B,Cがある。\\
(1)6個全部を一列に並べるとき、並び方は何通りあるか。\\
(2)6個全部を一列に並べるとき、ABの順で隣り合って\\
並ぶものが1個だけである並べ方は何通りあるか。\\
(3)4文字を選んで一列に並べる方法は何通りあるか。
\end{eqnarray}
この動画を見る 

【数A】高2生必見!! 2019年8月 第2回 全統高2模試 大問4_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る 

【数A】確率:確率の最大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
さいころを1000回投げるとき、1の目がちょうどk回出る確率をP(k)とする。
P(k)が最大となるkを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、\\
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の\\
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。\\
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、\\
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの\\
2m以上である確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}である。\\
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている\\
椅子の中心間の距離で測るものとする。
\end{eqnarray}
この動画を見る 
PAGE TOP