福田の一夜漬け数学〜順列・組合せ(5)〜円順列(後編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜順列・組合せ(5)〜円順列(後編)

問題文全文(内容文):
${\Large\boxed{1}}$
(1)赤玉4個,黄玉2個,白玉1個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉1個を紐に通して数珠を作る方法は何通りあるか。

${\Large\boxed{2}}$
(1)赤玉4個,黄玉2個,白玉2個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉2個を紐に通して数珠を作る方法は何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)赤玉4個,黄玉2個,白玉1個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉1個を紐に通して数珠を作る方法は何通りあるか。

${\Large\boxed{2}}$
(1)赤玉4個,黄玉2個,白玉2個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉2個を紐に通して数珠を作る方法は何通りあるか。
投稿日:2018.06.26

<関連動画>

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
この動画を見る 

勘で英検合格する確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
全部勘で英検やって合格する確率ってどれくらいですか?
この動画を見る 

数学「大学入試良問集」【4−1 組分け問題①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋$A,B$に分ける。
 (ⅰ)部屋$A$に3人、部屋$B$に4人となる分け方は全部で何通りあるか。
 (ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
 (ⅲ)(ⅱ)のうち、部屋$A$の人数が奇数である分け方は全部で何通りあるか。

(2)
4人を三つの部屋$A,B,C$に分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。

(3)
大人4人、こども3人の計7人を三つの部屋$A,B,C$に分ける。
 (ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
 (ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
 (ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
この動画を見る 

福田の数学〜京都大学2023年文系第1問〜3乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大学文系過去問
この動画を見る 
PAGE TOP