【高校数学】 数Ⅰ-65 2次不等式④ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-65  2次不等式④

問題文全文(内容文):
◎次の条件を満たすように、定数$a,b$の値をそれぞれ求めよう。
①2次不等式$x^2+ax+b\gt0$の解が$x \lt -2,1 \lt x$
②2次不等式$ax^2+9x+2b \geqq 0$の解が$4\leqq x \leqq 5$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たすように、定数$a,b$の値をそれぞれ求めよう。
①2次不等式$x^2+ax+b\gt0$の解が$x \lt -2,1 \lt x$
②2次不等式$ax^2+9x+2b \geqq 0$の解が$4\leqq x \leqq 5$
投稿日:2014.09.17

<関連動画>

福田の一夜漬け数学〜2次関数の最大最小(4)置き換えと遺言〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$y=x^4-2x^2-3$ の最小値とそのときの$x$を求めよ。

$y=2(x^2+2x)^2-4(x^2+2x)+3$ の最小値とそのときの$x$を求めよ。

$x \geqq 0,y \geqq 0,x+y=1$のとき、$xy$の最小値とそのときの$x,y$の値を求めよ。

問 $P=x^2-2xy+3y^2-2x+10y+2$の最小値を求めよ。
この動画を見る 

福田の一夜漬け数学〜絶対不等式(2)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。

(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る 

【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験)

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$

と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$

③$\displaystyle \frac{x+z}{[2]}$

④$\displaystyle \frac{z-x}{[2]}$

⑤$\displaystyle \frac{xz}{[2]}$


(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
      1回目 2回目 3回目
ストライド  2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$

$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。

[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
この動画を見る 

これって高校範囲なのでは? 埼玉県

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=2+\sqrt 3,y=2- \sqrt 3$
$(1+\frac{1}{x})(1+\frac{1}{y})=?$

埼玉県
この動画を見る 

整式の割り算!頻出です【山梨大学 入試問題】【数学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2014}$を整式$x^4+x^3+x^2+x+1$で割った余りを求めよ。

山梨大過去問
この動画を見る 
PAGE TOP