問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)aを実数とする。y=axのグラフとy=x|x-2|のグラフの交点の個数が\\
最大となるaの範囲を求めよ。\\
(2)0 \leqq a \leqq 2とする。S(a)をy=axのグラフとy=x|x-2|のグラフで\\
囲まれる図形の面積とする。S(a)をaの式で表せ。\\
(3)(2)で求めたS(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
投稿日:2022.05.15