【何を問われているか理解しているか?】計算:鎌倉学園高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【何を問われているか理解しているか?】計算:鎌倉学園高等学校~全国入試問題解法

問題文全文(内容文):
次の計算をしなさい.
${{2^3-(-2)^3}}\times{-2^5+(-2)^5}$

鎌倉学園高校過去問
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
${{2^3-(-2)^3}}\times{-2^5+(-2)^5}$

鎌倉学園高校過去問
投稿日:2022.04.24

<関連動画>

123456789✖️9➕10🟰?

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
123456789×9+10

金城学院中学校
この動画を見る 

【数学】中2-5 いろいろな多項式の計算②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
この動画を見る 

【数学】中2-2 式の加法・減法①

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
 $-x+y$
______
⑨$-x^2+6x$
 $5x^26x-9$
______

⑩と⑦の式をひっ算でやってみよう!!
この動画を見る 

中2数学「図形の文字式の利用」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第9回図形の文字式の利用~

例1 
底辺が0、高さがhの三角形Aがあります。
この三角形Aの底辺を4倍にし、高さを半分にした三角形Bを つくると、三角形Bの面積は三角形Aの面積の何倍になりますか。

例2
底面の半径がr、高さがhの円錐Aがあります.
この円錐Aの半径を半分にし、高さを2倍にした円錐Bを つくると、円錐Bの体積は円錐の体積の何倍ですか。
この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 
PAGE TOP