13奈良県教員採用試験(数学:1-2番 数列) - 質問解決D.B.(データベース)

13奈良県教員採用試験(数学:1-2番 数列)

問題文全文(内容文):
1⃣-(2)
$a_1$=3 , $a_2$=2
$a_n=\frac{2a_{n+1}・a_{n-1}}{a_{n+1}+a_{n-1}}$のとき$a_n$を求めよ。
単元: #数列#漸化式#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$a_1$=3 , $a_2$=2
$a_n=\frac{2a_{n+1}・a_{n-1}}{a_{n+1}+a_{n-1}}$のとき$a_n$を求めよ。
投稿日:2020.08.14

<関連動画>

【高校数学】階差数列の問題演習~基礎的な問題~ 3-9.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
この動画を見る 

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
$a_n=n3^n$・${}_{100} \mathrm{ C }_n$
$a_n$を最大にするnの値
この動画を見る 

数列 大阪大

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.

1979大阪大過去問
この動画を見る 
PAGE TOP