13奈良県教員採用試験(数学:1-2番 数列) - 質問解決D.B.(データベース)

13奈良県教員採用試験(数学:1-2番 数列)

問題文全文(内容文):
1⃣-(2)
$a_1$=3 , $a_2$=2
$a_n=\frac{2a_{n+1}・a_{n-1}}{a_{n+1}+a_{n-1}}$のとき$a_n$を求めよ。
単元: #数列#漸化式#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$a_1$=3 , $a_2$=2
$a_n=\frac{2a_{n+1}・a_{n-1}}{a_{n+1}+a_{n-1}}$のとき$a_n$を求めよ。
投稿日:2020.08.14

<関連動画>

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$m,n$:自然数
$m \geqq 2$
$f(\theta)=\displaystyle \frac{\sin\ n\theta}{\cos\ n\theta+m}$の最大値を$\alpha(m,n)$とする
$\displaystyle \sum_{m=2}^\infty \{\alpha(m,n)\}^2$を求めよ
この動画を見る 

福田の一夜漬け数学〜数列・階差数列と部分分数分解〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の一般項を求めよ。
$2,4,7,13,24,42,69,107,158,\cdots$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{4k^2-1}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{k^2+2k}$
(3)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)(k+2)}$
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 

数検準1級2次過去問【2020年12月】2番:数列

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.

(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
この動画を見る 
PAGE TOP