【2分で理解!大切な考え方】空間図形:大阪星光学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【2分で理解!大切な考え方】空間図形:大阪星光学院高等学校~全国入試問題解法

問題文全文(内容文):
母線の長さが10,底面の円の半径が5の円錐に球が内接している.
球の半径は$\Box$である.

大阪星光高校過去問
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
母線の長さが10,底面の円の半径が5の円錐に球が内接している.
球の半径は$\Box$である.

大阪星光高校過去問
投稿日:2022.11.27

<関連動画>

【中学数学】平面図形の演習・証明~岐阜県公立高校入試2018年度~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#受験年度の数字を含む問題
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図で、$\triangle BDC$と$\triangle ACE$はともに正三角形である。
また、線分ADとBEとの交点をF,ADと辺BCとの交点をGとする。

(1) $\triangle ADC \equiv EBC$であることを証明せよ。

(2) AB=4cm,AC=4cm,BC=6cmのとき、
  (ア) DGの長さを求めよ。
  (イ) EFの長さを求めよ。
この動画を見る 

【中学数学】ヒストグラム・度数折れ線を超丁寧に【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ヒストグラム・度数折れ線を超丁寧に説明
この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

国分寺高校(令和四年度)の最後の問題 2022入試問題解説100問解説65問目!

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体切断#立体図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
全ての辺の長さが4の正四角錐
立体I-ABCDの体積は?
*図は動画内参照

2022国分寺高等学校

この動画を見る 
PAGE TOP