佐賀大 三次関数上の三角形の面積 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

佐賀大 三次関数上の三角形の面積 Mathematics Japanese university entrance exam

問題文全文(内容文):
佐賀大学過去問題
$y=x^3-x$のグラフ上を点Pが原点から、$A(a,a^3-a)(a>0)$まで動く。
△OAPの最大値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
$y=x^3-x$のグラフ上を点Pが原点から、$A(a,a^3-a)(a>0)$まで動く。
△OAPの最大値
投稿日:2018.10.05

<関連動画>

関数の問題にみえて実は。。新田高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Pの座標は?
*図は動画内参照

新田高等学校
この動画を見る 

指数方程式 指数公式 杏林大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-1=2^{x-\displaystyle \frac{1}{2}}$

出典:杏林大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)点Aを、放物線$C_1:y=x^2$上にある点で、第1象限($x \gt 0$かつ$y \gt 0$の範囲)
に属するものとする。そのうえで、次の条件を満たす放物線
$C_2:y=-3(x-p)^2+q$ を考える。
1.点Aは、放物線$C_2$上の点である。
2.放物線$C_2$の点Aにおける接線をlとするとき、lは放物線$C_1$の点Aにおける
接線と同一である。
点Aの座標を$A(a,a^2)$とするとき、
$p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2$
と表せる。また、直線$l$、放物線$C_2$、および直線$x=p$で囲まれた部分の
面積は$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3$ である。

2021慶應義塾大学商学部過去問
この動画を見る 

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法① 2点から等距離となる軌跡は??

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,3),B(4,-1)から等距離にある点Pの軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(2)アポロニウスの円、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
この動画を見る 
PAGE TOP